416
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Role of the left coronary artery geometry configuration in atherosusceptibility: CFD simulations considering sPTT model for blood

, , , &
Pages 1488-1503 | Received 12 Oct 2020, Accepted 21 Feb 2021, Published online: 04 Mar 2021
 

Abstract

The achievement of clinically viable methodologies to simulate the hemodynamics in patient-specific coronary arteries is still a major challenge. Therefore, the novelty of this work is attained by the introduction of the viscoelastic property of blood in the numerical simulations, to study the role of the left coronary artery (LCA) geometry configuration in the atherosusceptibility. Apparently healthy patients were used and four different methodologies were tested. The methodology giving the most accurate results at the same time of having the lowest computational time is the one considering the viscoelastic property of blood and computational fluid dynamics. A Pearson correlation analysis was used to highlight relationships between geometric configuration and hemodynamic descriptors based on the simulated wall shear stress (WSS). The left main stem (LMS) has the greatest atherosusceptibility followed by the left anterior descending artery (LAD) since the relative residence time (RRT) average values are 3.81 and 3.70 Pa−1, respectively. The geometric parameters with relevant contribution to directional flow change are the cross-sectional areas, especially the one of LMS segment (ALMS), and the curvature of LMS segment. For LMS and LAD segments, when ALMS increases, blood flow disturbance (r = 0.81 in LMS and r = 0.74 in LAD) and atherosusceptibility (r = 0.84 in LMS and r = 0.85 in LAD) increases. When the LMS curvature decreases, the WSS magnitude (r = 0.80 in LMS and r = 0.83 in LAD) decreases, and disturbance (r=-0.80 in LMS and r=-0.91 in LAD) and atherosusceptibility (r=-0.74 in LMS and r=-0.74 in LAD) increases.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Fundação para a Ciência e Tecnologia (FCT), Portugal, the Institute of Science and Innovation in Mechanical and Industrial Engineering (LAETA-INEGI), the Engineering Faculty of University of Porto (FEUP) and the Cardiovascular Department of Gaia/Espinho Hospital Centre (CHVNG/E).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.