793
Views
5
CrossRef citations to date
0
Altmetric
Articles

Finite element study on the influence of pore size and structure on stress shielding effect of additive manufactured spinal cage

, &
Pages 566-577 | Received 02 Mar 2021, Accepted 16 Aug 2021, Published online: 23 Sep 2021
 

Abstract

The stress shielding effect occurs when the orthopedic implant reduces the load delivered to the bone, causing inefficient stress transfer to the host bone. The usage of porous additive manufactured (AM) cages reduces the stress shielding effect and promotes bone ingrowth also. The purpose of this work is to study the stress and deformation on porous hybrid spinal cages under different loading conditions using Finite Element Analysis (FEA). The spinal cages consisting of three porous structures with pore sizes ranging from 0.4 to 0.6 mm were investigated for stress shielding and fatigue strength. The results showed a significant reduction in stress shielding for the studied designs and conclude that the pore size has a greater significant effect on stress shielding than the porous structure in spinal cages.

Acknowledgment

The authors acknowledge the support provided by CSIR, New Delhi, India.

Disclosure statement

The authors declare there is no conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.