298
Views
0
CrossRef citations to date
0
Altmetric
ARTICLE

Elucidating factors influencing machine learning algorithm prediction in spasticity assessment: a prospective observational study

, , , , , & show all
Pages 971-984 | Received 24 Mar 2021, Accepted 04 Oct 2021, Published online: 20 Oct 2021
 

Abstract

The Machine Learning Model (MLM) has garnered popularity in rehabilitation, ranging from developing algorithms in outcome prediction, prognostication, and training artificial intelligence. High-quality data plays a critical role in algorithm development. Limited studies have explored factors that may influence the MLM algorithm performance in predicting spasticity severity level. The objectives of this study were to train and validate a MLM algorithm for spasticity assessment and determine the algorithm’s prediction performance in predicting ambiguous spasticity datasets. Forty-seven persons with central nervous system pathology that fulfilled the inclusion and exclusion criteria were recruited. Four biomechanical properties of spasticity were obtained using off-the-shelf wearable sensors. The data were analyzed individually, and ambiguous datasets were separated. The acceptable inertial data were used to train and validate MLM in predicting spasticity. The trained and validated MLM algorithm was later deployed to predict the ambiguous spasticity datasets. A series of MLM were applied, including Support Vector Machine, Decision Tree, and Random Forest. The MLM's performance accuracy of the validation data was 96%, 52%, and 72%, respectively. The validated MLM accuracy performance level predicting ambiguous datasets reduces to 20%, 23%, and 23%, respectively. This study elucidates data biases and variances of disease background, pathophysiological and anatomical factors that have to be considered in MLM training.

Disclosure statement

The authors declare no conflict of interest.

Additional information

Funding

This work was supported the Ministry of Energy, Science, Technology, Ministry of Science, Technology and Innovation (MOSTI) [Ref. IF1118C1042] and the German Federal Ministry of Education and Research under the Research Alliance for Intelligent Systems in Medical Technology in Malaysia (RAISE-MED).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.