339
Views
4
CrossRef citations to date
0
Altmetric
Article

Analysis of SIQR type mathematical model under Atangana-Baleanu fractional differential operator

, , &
Pages 98-112 | Received 14 Dec 2021, Accepted 24 Feb 2022, Published online: 10 Mar 2022
 

Abstract

In the given manuscript, the fractional mathematical model for the current pandemic of COVID-19 is investigated. The model is composed of four agents of susceptible (S), infectious (I), quarantined (Q) and recovered (R) cases respectively. The fractional operator of Atangana-Baleanu-Caputo (ABC) is applied to the considered model for the fractional dynamics. The basic reproduction number is computed for the stability analysis. The techniques of existence and uniqueness of the solution are established with the help of fixed point theory. The concept of stability is also derived using the Ulam-Hyers stability technique. With the help of the fractional order numerical method of Adams-Bashforth, we find the approximate solution of the said model. The obtained scheme is simulated on different fractional orders along with the comparison of integer orders. Varying the numerical values for the contact rate ζ, different simulations are performed to check the effect of it on the dynamics of COVID-19.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Project of Guangdong Provincial Department of Education under NO. 2021KCXTD038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.