187
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Mathematical modeling of corona virus (COVID-19) and stability analysis

ORCID Icon, , , ORCID Icon &
Pages 1114-1133 | Received 23 Feb 2022, Accepted 24 Jul 2022, Published online: 10 Aug 2022
 

Abstract

In this paper, the mathematical modeling of the novel corona virus (COVID-19) is considered. A brief relationship between the unknown hosts and bats is described. Then the interaction among the seafood market and peoples is studied. After that, the proposed model is reduced by assuming that the seafood market has an adequate source of infection that is capable of spreading infection among the people. The reproductive number is calculated and it is proved that the proposed model is locally asymptotically stable when the reproductive number is less than unity. Then, the stability results of the endemic equilibria are also discussed. To understand the complex dynamical behavior, fractal-fractional derivative is used. Therefore, the proposed model is then converted to fractal-fractional order model in Atangana-Baleanu (AB) derivative and solved numerically by using two different techniques. For numerical simulation Adam-Bash Forth method based on piece-wise Lagrangian interpolation is used. The infection cases for Jan-21, 2020, till Jan-28, 2020 are considered. Then graphical consequences are compared with real reported data of Wuhan city to demonstrate the efficiency of the method proposed by us.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.