289
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Modelling and simulation of fluid flow through stenosis and aneurysm blood vessel: a computational hemodynamic analysis

ORCID Icon, &
Pages 1160-1182 | Received 14 Feb 2022, Accepted 20 Jul 2022, Published online: 22 Aug 2022
 

Abstract

In this article, the hemodynamics of nanofluid flow through the modelled stenosis-aneurysm models in the presence of the catheter has been studied. The eight stenosis-aneurysm models are developed to mimic biological observations and thus make the model more realistic. The mathematical understanding helps in treating the stenosis in the blood vessel by targeting the unhealthy region to the drug, which is coated on nanoparticles. The catheter achieves the active drug release to the aimed organs by coating on the catheter surface, which adds additional benefits. In the present hemodynamic study, the blood is modeled as a couple stress fluid; as a result, the highly non-linear momentum, temperature, and concentration equations were obtained. The fluid flow equations’ complexity is further increased by incorporating the variable viscosity effects that arose due to the suspension of nanoparticles. The resultant mathematical model is solved by using the homotopy perturbation method. The convergence of the perturbed solutions is studied and depicted the degree of deformation in the case of temperature and concentration. The effects of the porous nature of the stenosis, no-slip at the catheter surface, and the free slip at the blood vessel boundary in the non-stenotic region are also considered in the model. The essential physiological property like surface shear stress is computed, and various parameters’ influence on shear stress is analyzed. The present analysis can be helpful in understanding the enhancement in mass dispersion and heat transfer in unhealthy blood vessels, which could be used for drug delivery in the treatment of stenotic conditions.

Acknowledgments

The author (J V Ramana Reddy) would like to acknowledge the resources of the VIRGO cluster at the High-Performance Computing Centre (HPCE), IIT Madras.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.