210
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Hybrid optimized feature selection and deep learning based COVID-19 disease prediction

&
Pages 2070-2088 | Received 02 Sep 2022, Accepted 19 Mar 2023, Published online: 05 Apr 2023
 

Abstract

The COVID-19 virus has affected many people around the globe with several issues. Moreover, it causes a worldwide pandemic, and it makes more than one million deaths. Countries around the globe had to announce a complete lockdown when the corona virus causes the community to spread. In real-time, Polymerase Chain Reaction (RT-PCR) test is conducted to detect COVID-19, which is not effective and sensitive. Hence, this research presents the proposed Caviar-MFFO-assisted Deep LSTM scheme for COVID-19 detection. In this research, the COVID-19 cases data is utilized to process the COVID-19 detection. This method extracts the various technical indicators that improve the efficiency of COVID-19 detection. Moreover, the significant features fit for COVID-19 detection are selected using proposed mayfly with fruit fly optimization (MFFO). In addition, COVID-19 is detected by Deep Long Short Term Memory (Deep LSTM), and the Conditional Autoregressive Value at Risk MFFO (Caviar-MFFO) is modeled to train the weight of Deep LSTM. The experimental analysis reveals that the proposed Caviar-MFFO assisted Deep LSTM method provided efficient performance based on the Mean Squared Error (MSE) and Root Mean Squared Error (RMSE), and achieved the recovered cases with the minimal values of 1.438 and 1.199, whereas the developed model achieved the death cases with the values of 4.582 and 2.140 for MSE and RMSE. In addition, 6.127 and 2.475 are achieved by the developed model based on infected cases.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.