82
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

A Porous Media Approach to Finite Deformation Behaviour in Soft Tissues

, &
Pages 157-170 | Received 18 May 1998, Accepted 05 Oct 1998, Published online: 28 Mar 2007
 

Abstract

The present work presents a porous medium formulation for the biomechanical analysis of soft tissues. An updated Lagrangian approach is developed to study the coupled effects of low speed flows of fluid phases, in partially or fully saturated conditions, and the finite deformation occurring in the solid matrix. The procedure developed allows both for the evaluation of coupled geometric and material non-linearities. The main theoretical and computational aspects of this multiphase formulation are discussed. The finite element method is used for the numerical solution of the resulting coupled system of equations. A reference case is reported with regard to healthy and degenerative phases of intervertebral segment. Results reported allow for a detailed interpretation of the formulation reliability, also by comparison with existing experimental data. In particular, the role played by the fluid on the load carrying mechanism is pointed out, thus stressing the importance of a multiphase approach to the overall behaviour of the spinal motion segment in time.

Additional information

Notes on contributors

A. N. NATALI

Corresponding author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.