49
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic processes in the Venice region outlined by environmental isotopes

&
Pages 35-44 | Received 23 Jun 2003, Accepted 16 Oct 2003, Published online: 13 May 2010
 

Abstract

Research carried out in the last 40 years has shown the scientific importance of groundwater circulation both in the Northern Adriatic sea bed and within the uppermost sedimentary layers of the Venice lagoon and of the Venice plain. Hydrodynamic processes are strictly controlled by a well-cemented sedimentary horizon lying under and around Venice (‘caranto’), which plays the role of regional aquitard. This layer was attributed to the subaerial cementation of the Flandrian (8–10 ka Before Present) sedimentary surface. The caranto is generalised as a continuum horizon, being an easy explanation for several environmental, hydrogeological and geotechnical problems, e.g., a base layer for landfills, a confining layer for deep aquifers and the best substratum for locating the oak wooden pile-dwelling needed to support the largest buildings.

The preservation of the isotope signal within the deep aquifers and aquiclude system records the changes in surface and groundwater characteristics and suggests the present and past recharge regimes. In this region, the heavily perturbed hydrodynamic conditions do not allow for the use of isotopic signals to derive a correct reconstruction of the present recharge. The perturbations induced by the intensive anthropogenic activity force to follow climate evolution by considering deep groundwater and pore waters. In addition, the presence of carbonatic rocks inside terrigeneous sediments affects the reconstruction of the past. Results indicate that carbonatic rocks are created by seepage, through the sediments, of gaseous carbon compounds from decaying organic layers. The gas interactions with the intra-sedimentary saline and fresh waters produce CO2, inducing the cementation of the sediments.

This research project was carried out as part of the R&D programme for Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche del CNR. Progetto 16 – ISRA contract n. 03.00074.GN42. The authors wish to thank Prof. A. L. Stefanon for his friendly support and helpful comments.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.