Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 1, 1998 - Issue 2
8
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Dietary Tyrosine Protects Striatal Dopamine Receptors from the Adverse Effects of REM Sleep Deprivation

, , , , &
Pages 119-131 | Received 10 Sep 1997, Published online: 13 Jul 2016
 

Abstract

L-Tyrosine is a non-essential amino acid that is produced as an intermediary metabolite in the conversion of phenylalanine to 3,4-dihyroxyphenylalanine (DOPA), and is a precursor of the neurotransmitter dopamine. In previous studies, tyrosine pretreatment was shown to protect against the neurochemical and behavioral deficits of acute stress caused by tail shock or cold exposure in rodents. The present study addressed the hypothesis that tyrosine administration may be an effective counter-measure to dopamine-mediated behaviors induced by rapid eye-movement sleep deprivation (RSD). In order to test the hypothesis, Sprague-Dawley rats were divided into 9 treatment groups: RSD-treated rats on normal-protein diet (20% casein: 1% tyrosine, 1% valine); tank control (TC) rats on a normal diet; cage control (CC) rats on normal diet; RSD-treated rats on 4% tyrosine diet; TC rats on 4% tyrosine diet; CC rats on 4% tyrosine diet; RSD-treated rats on 4% valine diet; TC rats on 4% valine diet; CC rats on 4% valine diet. In the RSD group receiving tyrosine, there was no apparent change in Bmax for binding of the dopamine D2 receptor ligand [3H]YM-09151–2 in the striata as compared to the respective TC and CC groups; whereas RSD-treated rats maintained on the normal diet and valine supplementation demonstrated expected increases in Bmax for ligand binding. The TC group on the tyrosine diet showed attenuated catalepsy compared to the corresponding CC group, while the RSD group consuming tyrosine showed a catalepsy that was significantly increased, and similar to that of cage control animais on a control diet. These data suggest that the tyrosine-supplemented diet significantly attenuated RSD-induced changes in striatal dopamine D2 receptors, and the effect appeared sufficient to influence RSD-induced behaviors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.