226
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and antiproliferative activity of novel (+)- usnic acid analogues

, , &
Pages 562-577 | Received 26 Nov 2018, Accepted 27 Mar 2019, Published online: 23 Apr 2019
 

Abstract

Twenty one novel (+)- usnic acid-based analogues belonging to three classes such as enamines, imines, and pyrazoles were synthesized. All the synthesized compounds were characterized by their spectral data (1H NMR, 13C NMR, IR, and HRMS). The synthesized compounds were evaluated for their antiproliferative activity against a panel of four human cancer cell lines including HeLa (cervix), MDA-MB-231 (breast), A549 (lung), and MiaPaca (pancreas) by employing SRB cell proliferation assay. Screening results indicated that all synthesized compounds showed enhanced activity than the parent compound. Most significantly, compounds 2e and 4a showed potent antiproliferative activity against all the cancer cell lines tested. Compounds 2e and 4a arrested the cell cycle in G2/M phase and induced apoptosis in HeLa cells. In view of significant antiproliferative activity, compounds 2e and 4a can be considered as lead molecules for further development.

Acknowledgments

We are thankful to Director, CSIR-IICT for support and encouragement.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research was financially supported by UGC, Govt. of India, provided Senior Research Fellowship to VNR.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.