2,568
Views
279
CrossRef citations to date
0
Altmetric
Original Articles

Moisture susceptibility of asphalt mixtures, Part 1: mechanisms

, , &
Pages 81-98 | Received 15 Mar 2007, Accepted 15 Aug 2007, Published online: 10 Mar 2008
 

Abstract

The detrimental effects of water in asphalt mixtures and its manifestation as distresses in asphalt pavements were first recognised in the 1930s and have been studied extensively during the last 35 years. This deterioration process, referred to as moisture damage, is generally defined as the degradation of the mechanical properties of the material due to the presence of moisture in its microstructure. Moisture damage is a complex phenomenon that involves thermodynamic, chemical, physical and mechanical processes. This paper describes the processes by which moisture damage affects asphalt mixtures. A critique of various moisture damage mechanisms is presented, followed by a review of recent work on modes of moisture transport (i.e. water permeability, capillary rise and vapour diffusion) and their relationship to moisture damage. Special attention is given to the characterisation of void structures of asphalt mixtures, which is an important factor that influences moisture transport. Finally, the paper presents a review of existing theories on the adhesive bond between aggregates and asphalt binders and the effect of the presence of moisture at the interface. The mechanisms described in the paper are complemented by a second paper that presents recent advances in moisture damage characterisation using experimental methods, analytical-based approaches (i.e. fracture mechanics, continuum mechanics, thermodynamics and micromechanics), and numerical modelling.

Acknowledgements

Special acknowledgements are given to Dr Robert Lytton for his invaluable contributions on the topics discussed in this paper, to the transportation agencies that continue funding projects in moisture damage and to the Federal Highway Administration and National Science Foundation for supporting this work (grant CMS-0315564).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.