682
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Packing theory-based framework to evaluate permanent deformation of unbound granular materials

, , &
Pages 309-320 | Received 03 Feb 2012, Accepted 28 Sep 2012, Published online: 26 Oct 2012
 

Abstract

Permanent deformation of unbound granular materials plays an essential role in the long-term performance of a pavement structure. Stability of unbound granular materials is defined by the particle-to-particle contact of the system, the particle size distribution and the packing arrangement. This paper presents a gradation model based on packing theory to evaluate permanent deformation of unbound granular materials. The framework was evaluated by using 10 unbound granular materials from different countries. The disruption potential, which determines the ability of secondary structure (SS) to disrupt the primary structure (PS), is introduced. This study also identified the amount of PS and SS that may eventually be used as a design parameter for permanent deformation of unbound road layers. The evaluation of the model regarding permanent deformation behaviour of granular materials is found to compare favourably with experimental results.

Acknowledgement

The authors would like to extend their sincere gratitude to the Swedish Road Administration (Trafikverket) for providing the financial support for the project.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.