419
Views
29
CrossRef citations to date
0
Altmetric
Articles

Mean profile depth analysis of field and laboratory traffic-loaded chip seal surface treatments

&
Pages 645-656 | Received 15 Apr 2013, Accepted 01 Oct 2013, Published online: 18 Nov 2013
 

Abstract

This paper presents a laboratory and field study to evaluate the mean profile depth (MPD) parameter that represents the surface texture of chip seal pavements. A three-dimensional laser profiler is used to determine the MPD values from both field pavement sections and field samples that have been tested in the laboratory using the third-scale model mobile loading simulator (MMLS3). Data obtained from five different field-constructed chip seal sections are used to evaluate the effects of different factors on the MPD of chip seal pavements. These factors include aggregate type, emulsion application rate, field versus MMLS3 traffic loading and traffic volume. The results presented in this paper suggest that: (1) chip seal pavements constructed using lightweight aggregate have larger initial MPD values and faster reduction in MPD as a function of the number of wheel passes than those constructed using granite 78M aggregate; (2) MPD values obtained from a drier section (with drier indicating a lower emulsion-to-aggregate ratio than that of the sections it is being compared against) initially drop quickly and significantly, resulting in a much smaller ultimate MPD value; (3) in general, the MPD values obtained under MMLS3 loading are similar to those obtained from field traffic loading, thus allowing the translation of the laboratory MMLS3 data to the field response data; (4) a short rest period in a high-traffic volume road retards the recovery of the binder and, therefore, leads to more permanent changes in the MPD and (5) the initial measured MPD value can help predict aggregate loss performance.

Notes

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.