919
Views
36
CrossRef citations to date
0
Altmetric
Articles

Mechanistic–empirical analysis of the results of finite element analysis on flexible pavement with geogrid base reinforcement

, , &
Pages 786-798 | Received 15 Jul 2012, Accepted 07 Feb 2014, Published online: 07 Mar 2014
 

Abstract

A finite-element response model was developed using ABAQUS software package to investigate the effect of geogrid base reinforcement on the response of a flexible pavement structure. Finite-element analyses were then conducted on different unreinforced and geogrid-reinforced flexible pavement sections. In this analysis, the base course (BC) layer was modelled using an elasto-plastic bounding surface model. The results of the finite-element analyses showed that the geogrid reinforcement reduced the lateral strains within the BC and subgrade layers, the vertical strain and shear strain at top of subgrade, and the surface permanent deformation. The higher tensile modulus geogrid resulted in larger reduction of surface permanent deformation. Based on the response parameters computed from the finite element analysis, the improvement of using geogrid for BC reinforcement was then evaluated using the damage models for rutting in the mechanistic–empirical method developed through NCHRP Project 1-37a. The results of mechanistic–empirical analyses showed that the traffic benefit ratio values can reach as high as 3.7 for thin base pavement section built over weak subgrade using high tensile modulus geogrid.

Acknowledgements

The authors would like to express their thanks to Mark Morvant, Zhongjie Zhang and Gavin Gautreau at LTRC for providing valuable help and support in this study.

Notes

Additional information

Funding

This research was funded by the Louisiana Transportation Research Center (LTRC) and the Louisiana Department of Transportation and Development.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.