915
Views
47
CrossRef citations to date
0
Altmetric
Articles

Towards a microstructural model of bitumen ageing behaviour

, , , , , & show all
Pages 939-949 | Received 27 Feb 2014, Accepted 19 Oct 2014, Published online: 10 Jul 2015
 

Abstract

When it comes to describe the mechanical behaviour of hot mix asphalt (HMA), the change of the mechanical properties over time due to environmental impacts known as ageing has to be considered. Hardening and embrittlement of bitumen lead to a reduced resistance against cryogenic cracks and premature formation of fatigue cracks in bituminous layers. Within this work, the microstructure of bitumen is investigated by conducting static shear creep tests on artificially composed bitumen with asphaltene contents varying between 0 vol-% and 26.71 vol-% as well as on a paving grade bitumen 70/100. Both are considered in unaged and laboratory-aged (rolling thin-film oven test + pressure ageing vessel) conditions to be able to identify and describe ageing effects. While the properties of the considered material phases of bitumen (identical to saturates, aromatics, resins and asphaltenes (SARA) fractions) seem to remain unaffected, an increase of the asphaltene content due to ageing can be observed. A micromechanical model is proposed that allows a prediction of the consequences of these microstructural changes on the mechanical behaviour of bitumen. Atomic force microscopy and environmental scanning electron microscopy images confirm a composition consisting of a micelle-like structure in a contiguous matrix, a structural representative volume element concept based on SARA fractions is suggested, extending an existing multiscale model for HMA. A very good accordance between model predictions and experimental results indicates the model's ability to reproduce as well as to describe the effects related to ageing.

Acknowledgements

The authors appreciate the support of Daniel Grossegger and Thomas Riedmayer with sample preparation and execution of CR tests.

Additional information

Funding

The authors gratefully acknowledge financial support from the Austrian Research Promotion Agency (FFG) and the sponsors Pittel+Brausewetter, Swietelsky and Nievelt through project ‘OEKOPHALT – Physical-chemical fundamentals on bitumen ageing’.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.