616
Views
17
CrossRef citations to date
0
Altmetric
Articles

Optimisation of hot mix asphalt performance based on aggregate selection

Pages 924-940 | Received 30 Dec 2014, Accepted 09 Apr 2015, Published online: 26 Jun 2015
 

Abstract

Researchers over the last four decades have identified and demonstrated the effects of aggregate morphological properties (particularly shape, size distribution, angularity and texture) on the mechanical properties of hot mix asphalt (HMA). Rare studies, however, have clearly established the relationships between the aggregate properties and pavement performance. Therefore, they have not provided methods to optimise aggregate properties at the design stage to improve that performance. This study focuses on understanding the effects of aggregate gradation and type on moisture damage resistance of HMA and on pavement performance as indicated by stiffness and rutting. Results show that basalt aggregate achieves higher moisture susceptibility resistance and stiffness than limestone aggregate. Coarser gradation has the highest permanent deformation, while open gradation 2C provides the lowest moisture damage resistance. Furthermore, dense gradation 4C provides the lowest rutting and the highest stripping resistance. It is indicated that suitable selection of aggregate type and gradation can improve pavement performance and reduce the moisture damage problem of HMA.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.