367
Views
7
CrossRef citations to date
0
Altmetric
Articles

Possible estimation of resilient modulus of fine-grained soils using a dynamic lightweight cone penetrometer

&
Pages 473-484 | Received 16 Dec 2014, Accepted 15 Sep 2015, Published online: 20 Oct 2015
 

Abstract

Resilient modulus is an important parameter to characterise the resilient behaviour of pavement materials. Resilient modulus can be determined in the laboratory from repeated load triaxial test and is defined as the ratio of deviator stress to recoverable strain. Inherently, it is a challenge to perform repeated load triaxial tests as a routine basic test due to its complicated, time-consuming and expensive procedure; hence, several empirical approaches to estimate the resilient modulus from other soil mechanical properties – California bearing ratio, unconfined compressive strength or physical properties – have been proposed. This study has investigated the application of a dynamic lightweight cone penetrometer for the estimation of the resilient modulus in the laboratory and field conditions for some Victorian fine-grained subgrade soils. The results show the possibility to estimate the resilient modulus of fine-grained soils using the dynamic lightweight penetration index at any moisture content (MC) from optimum MC to soaked conditions.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.