423
Views
8
CrossRef citations to date
0
Altmetric
Articles

Rutting progression models for light duty pavements

&
Pages 37-47 | Received 28 Aug 2015, Accepted 13 Feb 2016, Published online: 02 Mar 2016
 

Abstract

Deterioration models allow road managers to assess current condition and to predict future conditions of their road networks. Due to heavy vehicle axle repetitions and the effect of environmental factors, permanent deformation (rutting) develops gradually in the wheel paths and impacts on structural and surface performance of flexible pavements. This paper reports the approach adopted to develop absolute deterministic models for permanent deformation of low volume roads. A representative large sample network (23 highways) of light duty pavements was selected. For each section, time series data from four consecutive condition surveys were collected. Multiple regression analysis was carried out to develop models to predict pavement rutting progression over time as a function of a number of contributing variables. They include traffic loading, pavement strength, climate and drainage condition. For more powerful prediction, family group data-fitting approach was utilised to estimate future rutting progression based on the average rut depth curve for a series of pavements with similar characteristics. This study highlighted that separate family deterioration models are preferred and needed for more realistic results. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data with low standard error values. Also, study results show that higher traffic loading, lower pavement strength, poor drainage and climates with high seasonal variation contribute to increasing rutting progression rate.

Acknowledgements

The authors wish to acknowledge VicRoads staff for providing the data and information for this study and Austroads for making the LRP tool and climate tool available. The views of this paper are those of the authors and do not necessarily represent those of VicRoads.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.