472
Views
9
CrossRef citations to date
0
Altmetric
Articles

Optimisation of Marshall Design criteria with central composite design in asphalt concrete

, &
Pages 666-676 | Received 02 Jan 2018, Accepted 13 Jul 2018, Published online: 01 Aug 2018
 

ABSTRACT

In this study, optimum bitumen content (OBC), an important parameter on Marshall Design is described with a mathematical model by using statistical design method. The effects of independent variables such as number of blows, temperature, additive rate and bitumen content are analysed. The simultaneous optimisation of the dependent variables such as practical specific gravity, voids, voids of filled with asphalt cement, Marshall stability, flow and Marshall coefficient is determined with the central composite design. The optimum conditions are detected with 70 blows, temperature of 160°C, additive amount of 10% and OBC of 4.484%. The desirability function is applied to determine local optimisation points. Following the model application, practical specific gravity is estimated to be 2.418 g/cm3 with voids of 4%, voids of filled asphalt of 71.74%, Marshall stability of 1138.4 kgf under optimum conditions. While it is necessary to pour 126 samples to achieve a result with these variables in Marshall Design under normal conditions, the results are achieved just by pouring 30 samples thanks to the models established.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.