362
Views
1
CrossRef citations to date
0
Altmetric
Articles

Study on the metakaolin-based geopolymer pervious concrete (MKGPC) and its removal capability of heavy metal ions

, , , , &
Pages 1181-1192 | Received 19 Nov 2018, Accepted 09 Sep 2019, Published online: 24 Sep 2019
 

ABSTRACT

A metakaolin-based geopolymer pervious concrete (MKGPC) was developed to reduce the pollution of groundwater. In addition to the compressive strength, void ratio and permeability, the capacity of MKGPC on the removal of heavy metal ions in solution was focused. Its mechanisms were revealed from two aspects: the characteristics of binder and the volume structure of pervious concrete. The results showed that MKGPC has an excellent removal capacity of the heavy metal ions. In addition, we found that a low SiO2/Al2O3ratio at 2.0 could significantly improve the MKGPC's capability of removing heavy metal ions in solution, due to the formation of Natrolite. We also found that the decreases in the open void ratio and the permeability of MKGPC extend the contact time between the solution containing heavy metal ions and the MKG binder, thus improving the capacity of removing heavy metal ions in solution. Finally, the result indicated that pores of smaller size facilitate the adsorption of the heavy metal ions on MKGPC. To manufacture MKGPC which can purify water effectively, it is necessary to improve the adsorption ability of MKG binder and keep the balance between the open void, the permeability and the pore structure of MKGPC.

Disclosure statement

There is no conflict of interest.

Additional information

Funding

This work was supported by National Natural Science Foundation of China: [Grant Number 51402226] .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.