298
Views
8
CrossRef citations to date
0
Altmetric
Articles

Quantifying the effect of modified mixture volumetrics and compaction effort on skid resistance of asphalt pavements

ORCID Icon & ORCID Icon
Pages 1552-1560 | Received 24 May 2020, Accepted 11 Aug 2020, Published online: 26 Aug 2020
 

ABSTRACT

This paper aims to quantify the effect of modified mixture volumetrics and compaction effort on surface characteristics of asphalt pavements. Specimens were prepared using PG 64-10 asphalt binder mixed with crushed limestone aggregate. Three types of asphalt modifiers were added; Crumb Tire Rubber (CTR), Microcrystalline Synthetic Wax (MSW) and Nano Silica (NS). In addition, specimens were adjusted at 4% air void and were compacted at Design Number of Gyrations (Ndes) = 119 and 82 to simulate high and low levels of traffic, respectively. Research findings revealed that Air Voids Volume (Va) and Effective Binder Volume (Vbe) exert a significant effect on the surface frictional properties. Additionally, the ratio of Va to Vbe, expressed as Pv, was also investigated to study the combined effect of Va and Vbe on surface friction results. It was concluded that Pv has a considerable role in the evaluation process. It was also shown that increasing the level of compaction would result in a positive effect on British Pendulum Number (BPN) measurements and the opposite is true in terms of macrotexture measurements. Furthermore, CTR-modified mixtures exhibited the highest values of friction and macrotexture followed by NS-modified mixtures. MSW-modified and unmodified mixtures exhibited the least fractional characteristics.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.