307
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dynamic variation and deterioration mechanism of the friction coefficient between tire and pavement under the icy and snowy circumstances

, , &
Article: 2148160 | Received 18 Apr 2022, Accepted 09 Nov 2022, Published online: 25 Nov 2022
 

ABSTRACT

The accumulation and melting process of snow and ice contamination was simulated in an advanced environmental cabin. The pavement surface condition was monitored using the Vaisala mobile detector, and the friction coefficient between the tire and pavement was measured with the T2GO friction tester. The dynamic variation of the friction coefficient and its deterioration mechanism under various conditions were analyzed. Results show that after a thin ice layer develops on the surface of the coarse aggregate, the cohesion friction component decreases rapidly. Then, as the ice coverage widens, the hysteresis friction component decreases considerably. When the coverage rate of the ice layer reaches 100% and the thickness reaches 0.2–0.3 mm, the friction coefficient decreases to 0.2. In the process of snow accumulation, the friction coefficient is maintained at 0.43–0.45. As the snow layer is soft and easy to compact, the tire rubber can be embedded onto it; even if the thickness can sufficiently cover the macrotexture of the pavement, the hysteresis friction component can be maintained at a high level. In the early stage of snow melting, an ice layer forms on the snow layer’s surface, which reduces the friction coefficient to 0.2.

Acknowledgments

This work was supported by the Science and Technology Scheme of Shandong Provincial Department of Transportation 2020B202-01. Meanwhile, the experiment was carried out with strong support from Dr. Yu Zhang, who helped us with an advanced environmental cabin and relevant test devices. We sincerely appreciate his contribution.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.