232
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Study on effect of thermal, oxidative and ultraviolet coupled aging on rheological properties of asphalt binder and their contribution rates

, , &
Article: 2239426 | Received 19 May 2023, Accepted 14 Jul 2023, Published online: 01 Aug 2023
 

ABSTRACT

This paper aims to investigate the effect of different environmental conditions on the aging properties of virgin asphalt binder and evaluate the magnitude of aging on asphalt binder under different environmental conditions. The effect of thermal, oxidative and ultraviolet aging on the rutting resistance, fatigue resistance and cracking resistance of virgin asphalt binder was characterised based on rheological parameters. The contribution rate of different environmental factors to the aging of asphalt binder was quantitatively analysed. Results showed that high temperature repaired cracks in the asphalt binder caused by ultraviolet aging. The single aging factor of heat, oxygen and light had little effect on the rheological properties of asphalt binder. High temperature and oxygen would accelerate the aging effect of the asphalt binder aging process. Thermal–oxidative–UV-coupled aging had a more pronounced effect on the aging of asphalt binder than thermal–oxidative aging. The fatigue resistance of asphalt binder is more sensitive to the response of aging. The contribution rates of thermal–UV aging, UV–oxidative aging and thermal–oxidative aging were all greater than the sum of the contribution rates of the two corresponding single factors. The aging of asphalt binder was mainly due to thermal–oxidative aging when the aging temperature exceeded 80°C.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was supported by National Key Research and Development Program of China (grant no. 2022YFE0137300), National Natural Science Foundation of China (grant no. 52078018), and Key Technology Research in Shandong Province - Open Competition Mechanism to Select the Best Candidates Project (grant no. 2021-KJ-068).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.