117
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Physicochemical properties of enzymatic hydrolysis lignin-modified bitumen and its modification mechanism

&
Article: 2290094 | Received 01 Sep 2023, Accepted 23 Nov 2023, Published online: 08 Dec 2023
 

ABSTRACT

Enzymatic hydrolysis lignin (EHL) is a renewable, inexpensive and widely available biomass resource, which has great potentials in improving service performance of bituminous pavement. To develop EHL-modified bitumen and to reveal modification and anti-ageing mechanisms of EHL on bitumen, the impacts of EHL on basic performance, rheological property, micromorphology, chemical compositions, molecular weight distributions and thermal decomposition behaviors of bitumen were studied using basic property tests, dynamic shear rheometer (DSR) test, bending beam rheometer (BBR) test, environmental scanning electron microscope (ESEM) test, Fourier transform infrared spectrometry (FTIR) test, gel permeation chromatography (GPC) test and thermal gravimetric analyzer (TG) test. Results show that bituminous ductility and penetration are decreased, but bituminous viscosity and softening point are increased. Bituminous deformation resistance is improved by EHL. Bituminous cracking resistance is decreased slightly by EHL. Also, the compatibility between EHL and bitumen is satisfactory. Bituminous ageing is delayed owing to abundant phenol hydroxyl groups in EHL, which capture active free radicals produced in bituminous ageing process. Moreover, EHL cross-links with asphaltene to form macromolecular network structures to lower bituminous temperature sensitivity. Finally, EHL dosage of 8% is proposed to prepare EHL-modified bitumen, which effectively reduces energy consumption and increases ecological benefits.

Acknowledgements

We would like to thank Advanced Analysis & Testing Center of Nanjing Forestry University for the assistance in experiments.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

No data was used for the research described in the article.

Additional information

Funding

The authors would like to thank the financial support from National Natural Science Foundation of China [grant number 52278452], and Jiangsu Provincial Department of Education for the Qing Lan Project.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.