99
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of Kinetics of Stress-Induced Degradation of Polymer Additives in Lubricants and Viscosity Loss

, &
Pages 1-10 | Published online: 25 Mar 2008
 

Abstract

A fundamental approach to the problem of modeling mechanically induced polymer degradation is proposed. The polymer degradation is modeled by a kinetic equation for the density of the statistical distribution of linear polymer molecules as a function of their molecular weight. The integrodifferential kinetic equation is solved numerically. A comparison of numerically calculated molecular weight distributions and lubricant viscosity loss caused by polymer degradation with experimental ones obtained in bench tests showed that they are in excellent agreement. The effects of pressure, shear, temperature, and lubricant viscosity on lubricant degradation are considered. The increase of pressure promotes fast degradation while the increase of temperature depending on other parameters may delay or promote degradation. In some cases, the density of the molecular weight distribution function maintained its initial single-modal shape and in other cases it changed with time from a single-modal shape to a multi-modal one.

Presented as a Society of Tribologists and Lubrication Engineers Paper at the ASME/STLE Tribology Conference in Cancun, Mexico October 27–30, 2002

Notes

Presented as a Society of Tribologists and Lubrication Engineers Paper at the ASME/STLE Tribology Conference in Cancun, Mexico October 27–30, 2002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.