538
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Aramid Fiber and ZnO Nanoparticles on Friction and Wear of PTFE Composites in Dry and LN2 Conditions

, , &
Pages 59-65 | Received 06 Dec 2007, Accepted 26 Mar 2008, Published online: 07 Jan 2009
 

Abstract

The tribological performance of PTFE and PTFE-based composites filled with aramid fiber and ZnO nanoparticles in dry sliding and liquid nitrogen (LN 2 ) conditions was studied comparitively. The wear scars on the test specimen were observed by scanning electron microscopy (SEM). The transfer films of the composite material formed on the sliding interfaces were studied by X-ray photoelectron spectroscopy (XPS). The tribological test results of the tribo-pairs with two ANSI 440C steel pins sliding on a composite disk showed that, compared with the pure PTFE, the friction coefficient of the PTFE-based composites filled with both aramid fiber and ZnO nanoparticles is reduced in dry sliding in room temperature (RT) air, whereas its friction coefficient is increased in LN 2 . The friction coefficient of the composite filled with 5 wt% ZnO nanoparticles alone increases compared to unfilled PTFE in both RT air or in LN 2 conditions. While in LN 2 , the friction coefficient of the same 5% ZnO material is lower, and the wear resistance is higher than those under dry sliding, the C–F bond cleavage in PTFE was found in transfer films formed in dry sliding or LN 2 conditions, and the F atoms were combined with Fe atoms from the sliding steel pins.

ACKNOWLEDGMENTS

The authors would like to acknowledge the support of Project 50275031 supported by National Natural Science Foundation of China and partially supported by the National Basic Research Program of China (2007CB607602).

Review led by Thierry Blanchet

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.