368
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of a Grooved Parallel Bearing with a Mass-Conserving Cavitation Algorithm

, &
Pages 227-236 | Received 02 Feb 2010, Accepted 24 Oct 2010, Published online: 23 Dec 2010
 

Abstract

Several load-supporting mechanisms have been studied to deal with the cavitation problem in parallel bearings. The formation of cavities and their disposition affect the pressure generated in a continuous thin film and hence the load capacity of bearings. In solving the Reynolds equation, proper cavitation boundary conditions must be applied. In this article, the mass-conserving Vijayaraghavan-Keith cavitation algorithm is utilized to analyze the hydrodynamic lubrication performance of parallel bearings with one or more grooves. Using the finite difference method, a one-dimensional Reynolds equation is discretized. Gauss-Seidel iteration is used to solve the obtained set of linear algebraic equations. For a given lubricant, sliding speed, and minimum film thickness, several comparative studies are made between the Vijayaraghavan-Keith cavitation algorithm and a published analytic solution. Several factors affecting the hydrodynamic lubrication performance are considered, such as cavitation pressure, inlet length, groove number, and textured pattern. The analysis results validate the Vijayaraghavan-Keith cavitation algorithm. It is found that the Vijayaraghavan-Keith algorithm is not sensitive to the textured groove depth. In addition, inlet roughness, inlet suction, and quasi-antisymmetric integration are identified to be the essential features that generate hydrodynamic pressure in parallel bearings.

ACKNOWLEDGEMENT

This research was financially supported by the Nature Science Foundation of China (No. 50875136) and the program for New Century Excellent Talents of the University of China (NCET-07-0474). The authors are thankful to Dr. Mark Fowell and the anonymous reviewers for detecting errors in the original manuscript and suggesting improvements.

Review led by Ted Keith

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.