1,262
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Microstructural Variation on Erosion Wear Behavior of Ti-6Al-4V Alloy

, , , &
Pages 555-560 | Received 20 Sep 2012, Accepted 14 Jan 2013, Published online: 18 Apr 2013
 

Abstract

The present article describes the effect of microstructural variations—that is, lamellar, bimodal, and equiaxed—on solid particle erosion wear behavior of Ti-6AL-4V alloy at room temperature. Erosion tests were carried out at various test conditions using an air jet–type test rig and Taguchi's orthogonal array experimental design. The results indicated that impact velocity is the most significant controlling factor influencing the solid particle erosion wear of Ti-6Al-4V alloy followed by impact angle, microstructural variation, and size of erodent. The lamellar microstructure of Ti-6Al-4V alloy has excellent erosion resistance, followed by bimodal and equiaxed microstructures. Ploughing or pile-up leading to platelet formation was found to be the primary mechanism of material loss in erosion of Ti-6Al-4V alloy. This mechanism of material loss is independent of its microstructural variation. These results were determined after observation of the eroded surface under a scanning electron microscope. Optical microscopy, Rockwell hardness testing, and scanning electron microscopy were used to characterize the microstructures and eroded surfaces of the Ti-6Al-4V alloy in order to correlate the results obtained.

ACKNOWLEDGEMENT

The authors are grateful to Professor B. K. Mishra, Director, Institute of Minerals and Materials Technology, Bhubaneswar, for his valuable suggestions and guidance during the course of this investigation. Assistance received from our other colleagues in the Surface Engineering Department is also gratefully acknowledged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.