540
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of Three Laboratory Tests to Quantify Mild Wear Rate

, &
Pages 919-928 | Received 17 Dec 2012, Accepted 16 May 2013, Published online: 08 Aug 2013
 

Abstract

Because the viscosities of engine and transmission lubricants are lowered in order to reduce hydrodynamic friction and thus energy consumption, it is important to ensure that wear rates do not increase and thus machine durability is not impaired. In practical terms this means that we require reliable methods for measuring the mild wear rates present in most lubricated machine components.

This article compares three mild wear reciprocating laboratory tests, one based on the high-frequency reciprocating rig (HFRR) and two on the mini-traction machine (MTM), in order to explore the extent to which wear rate is determined by the test configuration. The results show that some additive-containing lubricants including blends of antiwear additive and dispersant give quite consistent wear rates, independent of whether the surface is in continuous or intermittent contact, whereas others such as two friction modifiers do not. Possible reasons for these differences are discussed. The importance of accounting for wear during running-in and the need to remove any thick tribofilms present before quantifying wear volume are also confirmed.

Acknowledgments

Review led by Gary Barber

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.