263
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Surface Geometry on the Hydrodynamic Performances of Parallel Bearings in Transient Flow Conditions

, , &
Pages 953-967 | Received 06 Feb 2013, Accepted 06 Jun 2013, Published online: 08 Aug 2013
 

Abstract

Because a perfectly smooth surface does not actually exist, the classical principles of fluid mechanics dictate that the flow between two surfaces that are in relative motion is fundamentally unsteady. Therefore, the fluid film profile can be submitted to rapid oscillations in both space and time. This article shows how these oscillations become dependent on the surface geometry. By employing a transient mass-conserving cavitation model, we study several cases in which surface roughness and surface texturing are considered on both surfaces of a parallel bearing. For an applied load, the model shows the impact of surface geometry on the hydrodynamic performance of the bearing in terms of nominal film thickness, friction force, and volumetric flow rate. In addition, the results illustrate how different operating parameters such as the applied load and the speed of the moving surface affect the presence of cavitation within the bearing.

Acknowledgments

Review led by Victor Wong

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.