341
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Lubricating Grease Shear Flow and Boundary Layers in a Concentric Cylinder Configuration

, , , &
Pages 1106-1115 | Received 13 Feb 2014, Accepted 18 Jun 2014, Published online: 02 Oct 2014
 

Abstract

Grease is extensively used to lubricate various machine elements such as rolling bearings, seals, and gears. Understanding the flow dynamics of grease is relevant for the prediction of grease distribution for optimum lubrication and for the migration of wear and contaminant particles. In this study, grease flow is visualized using microparticle image velocimetry (μPIV). The experimental setup includes a concentric cylinder configuration with a rotating shaft to simulate the grease flow in a double restriction seal geometry with two different grease pocket sizes. It is shown that the grease is partially yielded in the large grease pocket geometry and fully yielded in the small grease pocket. For the small grease pocket, it is shown that three distinct grease flow layers are present: a high shear rate region close to the stationary wall, a bulk flow layer, and a high shear rate boundary region near the rotating shaft. The grease shear thinning behavior and its wall slip effects have been identified. The μPIV experimental results have been compared with a numerical model for both the large and small gap size. It is shown that the flow is close to one-dimensional in the center of the small pocket. A one-dimensional analytical model based on the Herschel-Bulkley rheology model has been developed, showing good agreement with the measured velocity profiles in the small grease pocket. Furthermore, wall slip effects and shear banding are observed, where the latter imply that using the assumption of uniform shear in conventional concentric cylinder rheometers may result in erroneous rheological results.

ACKNOWLEDGEMENTS

The authors thank Alexander de Vries, Director SKF Group Product Development, for his kind permission to publish this article.

Additional information

Funding

The authors thank the Swedish Science Council (VR) for their financial support for the work presented in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.