435
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Tribological and Corrosion Behavior of HVOF-Sprayed WC-Co-Based Composite Coatings in Simulated Mine Water Environments

, , &
Pages 337-348 | Received 21 Oct 2013, Accepted 27 Sep 2014, Published online: 20 Oct 2014
 

Abstract

WC-based cermet coatings have been considered as alternative replacements to the more traditional hard chrome plating for improved surface properties. Though these coatings are used in engineering applications requiring superior hardness and improved wear resistance, little is known about their corrosion resistance. In this study, four WC-based composite coatings were deposited onto austenitic stainless steel substrates using high-velocity oxy fuel (HVOF) technology. Wear and potentiodynamic scanning studies in a simulated mine environment were conducted on the coatings. Characterization of the as-received powders, coating structure, composition, and morphology was carried out prior to and after wear studies and corrosion testing using optical microscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) elemental analysis. The results showed that the chemical composition of the binder material plays a significant role in influencing the wear and corrosion behavior of HVOF-sprayed WC cermet coatings in an aggressive mine water environment. During wet sliding, addition of Cr in the binder improves the wear resistance of the coating. WC-10Co-4Cr showed the highest wear resistance in a wet sliding environment and also exhibited the best corrosive behavior of the evaluated coatings, due to a Cr2O3 oxide passive film that forms during anodic polarization.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.