300
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Temperature on Tribological Properties and Wear Mechanisms of NiAl Matrix Self-Lubricating Composites Containing Graphene Nanoplatelets

, , , &
Pages 729-735 | Received 04 Nov 2014, Accepted 21 Jan 2015, Published online: 05 May 2015
 

Abstract

Studies have been carried out to explore the friction and wear behaviors of NiAl matrix self-lubricating composites containing graphene nanoplatelets (NG) against an Si3N4 ball from 100 to 600°C with a normal load of 10 N and a constant speed of 0.2 m/s. The results show that NG exhibits excellent tribological performance from 100 to 400°C compared to NiAl-based alloys. A possible explanation for this is that graphene nanoplatelets (GNPs) contribute to the formation of a friction layer, which could be beneficial to the low friction coefficient and lower wear rate of NG. As the temperature increases up to 500°C, the beneficial effect of GNPs on the tribological performance of NG becomes invalid due to the oxidation of GNPs, resulting in severe adhesive wear and degradation of the friction layer on the worn surface of NG. GNPs could hold great potential applications as an effective solid lubricant to promote the formation of a friction layer and prevent severe sliding wear below 400°C.

ACKNOWLEDGEMENTS

The authors thank the Material Research and Testing Center of Wuhan University of Technology for their assistance.

Funding

This work was supported by the Project for Science and Technology Plan of Wuhan City (2013010501010139).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.