322
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Performance Evaluation of Bidirectional Dry Gas Seals with Special Groove Geometry

, &
Pages 58-69 | Received 25 Sep 2015, Accepted 20 Jan 2016, Published online: 11 Jul 2016
 

ABSTRACT

There are a very few studies of bidirectional gas seals, particularly those with certain profiles used in the industry. A parametric study of the performance of bidirectional dry gas seals under a set of operating conditions is presented. The expounded approaches use solution of 3D Navier-Stokes momentum and continuity equations for various forms of grooved gas seals, particularly for the trapezoidal shape variety for which there has been a particular dearth of in-depth analyses. It is shown that such groove geometries enhance the load-carrying capacity of the seal through increased hydrodynamic lift. This is as the result of enhanced localized wedge flow, particularly with a reduced seal gap. Therefore, there is the opportunity of gap minimization while reducing leakage rate and power loss. For given operating loading, kinematic and thermal conditions, as well as seal geometry and topography, the operating minimum film thickness may be considered the main design parameter.

Acknowledgements

The first author wishes to express her gratitude to the Chinese Scholarship Council (CSC) for providing her with the opportunity to carry out this research at Loughborough University, UK. Thanks are also due to John Crane Ltd. for providing representative data and technical support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.