305
Views
9
CrossRef citations to date
0
Altmetric
Articles

NBR Powder Modified Phenolic Resin Composite: Influence of Graphite on Tribological and Thermal Properties

, , &
Pages 548-556 | Received 30 Sep 2015, Accepted 01 May 2016, Published online: 23 Sep 2016
 

ABSTRACT

The incorporation of graphite as a solid lubricant in the formulation of brake friction material is well-recognized practice. However, achieving the desired level of performances using graphite is still a significant challenge, due to difficulty in dispersion and loading of graphite in composite materials. The present investigation was aimed at identifying the effect of graphite loading on the tribological and thermal properties of a composite made from phenolic resin modified with powdered acrylonitrile butadiene rubber (NBR). Five composites were prepared with different proportions of graphite (0–40 phr) to the phenolic resin. Thermogravimetric analysis (TGA) and thermal conductivity measurements were carried out to demonstrate the thermal stability and thermal conductivity behaviors. Both the thermal stability and thermal conductivity were found to increase with an increase in graphite content. On the other hand, the tribological properties were found to be optimum at a definite loading of graphite (30 phr). The change in surface morphology of these composites was studied before and after the friction test and correlated with the tribological properties. This investigation provides guidelines for achieving a high-performance composite using graphite for brake friction materials.

Funding

The authors sincerely acknowledge financial support of the funding agency Research Design and Standard Organization (RDSO), Lucknow, India, for carrying out this research work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.