446
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Transient Pressure and Temperature Field Measurements in a Lightly Loaded Circumferential Groove Journal Bearing from Startup to Steady-State Thermal Stabilization

, , &
Pages 988-1010 | Received 19 Mar 2016, Accepted 22 Sep 2016, Published online: 02 Nov 2016
 

ABSTRACT

The fluid film pressure and temperature fields have been measured simultaneously under laboratory conditions at one land of a circumferential groove journal bearing (CGJB), together with friction torque and oil flow rate, during a time span from stand-still startup to the development of a thermally stabilized steady operating regime.A very fine measurement grid—that is, 216 pressure and 180 temperature points spread across the axial and circumferential directions—has been obtained by joining and synchronizing measurements from separate test runs while rigorously re-creating the test conditions.The study confirmed that the pressure field is established faster than the temperature field, that film rupture occurs both from cavitation nuclei downstream the minimum film thickness and through air ingestion from the environment. Furthermore, the high pressures in the convergent zone stabilize relatively quickly, whereas the low pressures in the divergent zone cavitated region require a longer time to stabilize. The cavitated region reverse flow appearance has been identified thermally through upstream-oriented isotherms. This study is the first to present the transient evolutions of pressure and temperature fields.

View correction statement:
Corrigendum

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.