321
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Influence of PP-g-MA Compatibilization on the Mechanical and Wear Properties of Polypropylene/Thermoplastic Polyurethane Blends

&
Pages 754-764 | Received 08 May 2017, Accepted 12 Nov 2017, Published online: 19 Mar 2018
 

ABSTRACT

Polypropylene/thermoplastic polyurethane (PP/TPU) blends of different weight ratios (75/25 and 25/75) were processed by melt blending using a maleic anhydride–grafted polypropylene (PP-g-MA) copolymer as coupling agent. The influence of the amount of the coupling agent (0, 3, 5, 7, 9, 11 phr) on the mechanical, frictional, and wear properties of the blends were characterized through tensile test, three-point bending, dynamic mechanical analysis (DMA), and ball-on-disc wear tests. PP-g-MA was found to be an effective compatibilizer for PP/TPU blends, and mechanical and wear properties of the blends were proved to be strongly impacted by the amount of coupling agent. Tensile strength of the blends tends to increase with increasing the PP-g-MA content and 9 phr is found to be optimal for both concentrations of the blends. Good miscibility of the blends with increasing compatibilizer content was also verified by DMA. From the wear test results, the compatibilizer was found to be more effective in PP75/TPU25 blends, in parallel with the results of the mechanical tests. The PP75/TPU25 blend with 11 phr PP-g-MA content was superior to the other blends. In addition, in this work, a new model based on image processing is proposed that provides accurate and fast wear rate measurement and detailed information of the wear track, especially in heterogeneous materials. Using the model, the homogeneity of the wear track widths was proved to be strongly impacted and improved by the use of a coupling agent.

Additional information

Funding

This work was supported by the Office of Scientific Research Projects in Erciyes University, Turkey, under Project No. FYL-2017-7084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.