532
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Enhancing the Tribological Behavior of Lubricating Oil by Adding TiO2, Graphene, and TiO2/Graphene Nanoparticles

ORCID Icon, , , &
Pages 452-463 | Received 11 Sep 2017, Accepted 18 Jan 2019, Published online: 15 Apr 2019
 

Abstract

This article investigates the tribological behavior of nanoparticles (NPs) of titanium dioxide anatase TiO2 (A), graphene, and TiO2 (A) + graphene added to the pure base oil group ΙΙ (PBO-GΙΙ). The morphology of these two nanostructures of TiO2 (A) and graphene was characterized by transmission electron microscopy (TEM). Oleic acid (OA) was blended as a surfactant into the formulation to help stabilize the NPs in the lubricant oil. A four-ball test rig was used to determine the tribological performance of six different samples, and an image acquisition system was used to examine and measure the wear scar diameter of the stationary balls. Field emission–scanning electron microscopy (FE-SEM) was used to examine the wear morphology. Energy-dispersive X-ray spectroscopy (EDX), element mapping, and Raman spectroscopy were employed to confirm the presence of (TiO2 (A) + graphene) and the formation of a tribolayer/film on the mating surfaces. Moreover, a 3D optical surface texture analyzer was utilized to investigate the scar topography and tribological performance. The experiments proved that adding (0.4 wt% TiO2 (A) + 0.2 wt% graphene) to the PBO-GΙΙ optimized its tribological behavior. These excellent results can be attributed to the dual additive effect and the formation of a tribofilm of NPs during sliding motion. Furthermore, the average reductions in the coefficient of friction (COF), wear scar diameter (WSD), and specific wear rate (SWR) were 38.83, 36.78, and 15.78%, respectively, for (0.4 wt% TiO2 (A) + 0.2 wt% graphene) nanolubricant compared to plain PBO-GΙΙ lubricant.

Additional information

Funding

The authors thank the University of Malaya, which made this study possible through the Grand Challenge Program (Grant Number GC001D-14AET), UMRG Program (Grant Number RP039A-15AET), and IPPP Program (Project Number PG147-2015B).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.