220
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental Detection of Lubrication Characteristics in a Solid–Liquid Two-Phase Flow Supported Bearing-Rotor System Using Vibration Monitoring Techniques

ORCID Icon, , , , &
Pages 929-942 | Received 19 Sep 2021, Accepted 18 Aug 2023, Published online: 07 Sep 2023
 

Abstract

This work aims to investigate the friction and vibration behaviors of a liquid–solid two-phase flow supported bearing-rotor system for the early monitoring and assessing of oil contamination resulting from externally ingested particles. Based on a Jeffcott rotor test rig, the lubricating oil in journal bearing was mixed with micron-scale silica particles of different sizes and concentrations. The vibration monitoring techniques utilizing eddy current, photoelectric, and piezoelectric sensors were conducted to detect the rotor displacement amplitude and bearing acceleration online. According to the quantitative evaluation, the vibration frequency spectrum, shaft trajectory, and the bearing surface characteristics were analyzed and classified at different conditions of particle parameters. Furthermore, the lubricating mechanism at bearing interface which possesses a strong interactive coupling effect with rotor vibration was deduced and illustrated. The results showed that although the sizes of ingested micron particles were less than the minimum oil-film thickness, they usually exhibited detrimental effects on the flow stability and fluid support. As the particle size or concentration increased, the interaction between particles and bearing surfaces led to the burrs in time-domain waveform, reverse displacements in rotor orbit, higher frequency harmonics in vibration spectrum, and the scratches on the bearing surface. The occurrence of continuous three-body friction could induce misalignment, blockage, oil starvation, and rub-impact fault. Furthermore, the detectability of particle contamination and damage microstructure of bearing surface was described for reference.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51875154 and 51975174), and the Key Research and Development Program of Anhui Province of China (Grant No. 202004a05020057).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.