27
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Simulation Study with Arbitrary Profile Liquid Annular Seals

, , &
Pages 667-678 | Published online: 25 Mar 2008
 

Abstract

This paper presents an improved dynamic analysis for liquid annular seals with arbitrary profile based on a method first proposed by Nelson and Nguyen. An improved first-order solution that incorporates a continuous interpolation of perturbed quantities in the circumferential direction is presented. The original method uses an approximation scheme for circumferential gradients of zeroth order solution based on Fast Fourier Transforms (FFT). A simpler scheme based on cubic splines is found to be computationally more efficient, with better convergence at higher eccentricities. Arbitrarily varying seal profiles in both axial and circumferential directions are considered. A procedure for computing dynamic coefficients based on external specific load is discussed. An example case of an elliptical seal with varying degrees of axial curvature is analyzed. A case study based on actual operating clearances (6 axial planes with 68 clearances/plane) of an interstage seal of the Space Shuttle Main Engine High Pressure Oxygen Turbopump (SSME-ATD-HPOTP) is presented.

Presented in the 48th Annual Meeting in Calgary, Alberta, Canada May 17-20, 1993

Notes

Presented in the 48th Annual Meeting in Calgary, Alberta, Canada May 17-20, 1993

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.