150
Views
99
CrossRef citations to date
0
Altmetric
Original Articles

Impact of Plateaued Surfaces on Tribological Performance

Pages 354-361 | Published online: 25 Mar 2008
 

Abstract

Plateaued surfaces are surfaces that have been machined to simulate those that result from normal running in and are said to have advantages over conventional or non-plateaued surfaces. However, the evidence is lacking. This study evaluates the tribological performance of plateaued and non-plateaued surfaces on a pin-on-disk tribometer. The honing pattern of an engine cylinder bore was simulated on the disks. These disks have similar average surface heights with either plateaued or non-plateaued surface finish. Friction, wear and scuffing resistance of plateaued and non-plateaued disks were evaluated. Results from the pin-on-disk tribometer show that in the hydrodynamic lubrication regime plateaued and non-plateaued disks have the same friction, while in the mixed lubrication regime the plateaued surface has less friction. The author's findings also reveal that plateaued surfaces tend to have higher wear resistance but lower scuffing resistance. It also confirms the conventional wisdom that plateaued surfaces have shorter running-in wear period.

Presented at the 50th Annual Meeting in Chicago, Illinois May 14–19, 1995

Notes

Presented at the 50th Annual Meeting in Chicago, Illinois May 14–19, 1995

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.