83
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Thermoelastohydrodynamic Analysis of Fixed Geometry Thrust Bearings Including Runner Deformation

, &
Pages 555-562 | Published online: 25 Mar 2008
 

Abstract

A thermoelastohydrodynamic theory for the analysis of sector thrust bearings is presented. The analysis includes the generalized Reynolds equation and a fully elliptic three-dimensional energy equation in the film. In addition, full three-dimensional heat transfer is allowed in the pad while axisymmetric conduction is allowed in the runner. Three-dimensional elastic deformation due to mechanical and thermal loading is allowed in the pad while axisymmetric mechanical elasticity is allowed in the runner. The performance of a parallel tapered-land thrust bearing including runner deformation effects is analyzed as a function of different models. It is seen that mechanical deformation of the pad affects the operating characteristics only slightly while thermal deformation of the pad can cause large increases in operating temperature. The runner deformation effects can include a reduction of the maximum film temperature at slight deformation or a large increase in film temperature at the inner radius of the pad at larger deformations.

Presented as a Society of Tribologists and Lubrication Engineers paper at the STLE/ASME Tribology Conference in Kissimmee, Florida, October 8–11, 1995

Notes

Presented as a Society of Tribologists and Lubrication Engineers paper at the STLE/ASME Tribology Conference in Kissimmee, Florida, October 8–11, 1995

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.