22
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Au/Cr Sputter Coating for the Protection of Alumina During Sliding at High Temperatures

&
Pages 670-676 | Published online: 25 Mar 2008
 

Abstract

A sputter-deposited bilayer coating of gold and chromium was investigated as a potential solid lubricant to protect alumina substrates in applications involving sliding at high temperatures. The lubricant was tested in a pin-on-disk tribometer with coated alumina disks sliding against uncoated alumina pins. Three test parameters—temperature, load and sliding velocity—were varied over a wide range in order to determine the performance envelope of the Au/Cr solid lubricant film. The tribo-tests were run in air at temperatures of 25° to 1000°C, under loads of 4.9 to 49.0 N and at sliding velocities from 1 to 15 ms−1. Posttest analyses included surface profilometry, wear factor determination and SEM/EDS examination of worn surfaces.

Compared to unlubricaled Al2O3 sliding, the use of the Au/Cr film reduced friction by 30 to 50 percent and wear by one to two orders of magnitude. Increases in test temperature resulted in lower friction and the Au/Cr film continued to provide low friction, about 0.3, even at 1000°C. Pin wear factors and friction were largely unaffected by increasing loads up to 29.4 N. Sliding velocity had essentially no effect on friction, however, increased velocity reduced coaling life (total sliding distance). Based upon these research results, the Au/Cr film is a promising lubricant for moderately loaded, low-speed applications operating at temperatures as high as 1000°C.

Presented as a Society of Tribologists and Lubrication Engineers paper at the STLE/ASME Tribology Conference in Kissimmee, Florida, October 8–11, 1995

Notes

Presented as a Society of Tribologists and Lubrication Engineers paper at the STLE/ASME Tribology Conference in Kissimmee, Florida, October 8–11, 1995

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.