237
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Predicting Physico-Chemical Properties of Alkylated Naphthalenes with COSMO-RS

, &
Pages 1-19 | Received 27 Oct 2011, Accepted 03 Apr 2012, Published online: 10 Jan 2013
 

Abstract

COSMO-RS, the Conductor-like Screening Model for Real Solvents, has been used to predict a set of basic partition coefficients of 22 (alkylated) naphthalenes. To validate the approach, methyl-, dimethyl-, and ethylnaphthalenes have been chosen, according to the availability of experimental data. Then, predictions have been extended to diisopropylnaphthalenes. Given the model's expected uncertainty intervals, COSMO-RS predictions of aqueous solubilities, (subcooled) vapor pressures, Henry's law constants, as well as octanol-water partition coefficients, are in agreement with available literature data. Simultaneous overestimation of aqueous solubilities and vapor pressures of comparable magnitude leads to partial error cancellation in the Henry's law constants. Based on physico-chemical property data obtained with COSMO-RS, the Mackay Level III fugacity model, a steady-state, non equilibrium, and regional-scale model, has been applied to exemplary evaluate the tendency of 2,6-diisopropylnaphthalene to migrate between media by modelling emissions to each individual medium and calculating the amount present at steady state.

Acknowledgments

Dedicated to Professor Lothar Beyer on the occasion of his 75th birthday.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.