115
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

DFT Studies on a Series of Nitramines Containing Pyridine Ring

&
Pages 588-605 | Received 13 Sep 2013, Accepted 18 Apr 2014, Published online: 26 Aug 2014
 

Abstract

In this article, a series of nitramines containing pyridine ring were studied by density functional theory (DFT). The gas-phase heats of formation were predicted based on the isodesmic reactions and the condensed-phase heats of formation and heats of sublimation were estimated with the Politzer's approach. The detonation velocity and pressure were calculated using the empirical Kamlet-Jacobs equation. Many title compounds have better performance than RDX (hexahydro-1,3,5-trinitro-1,3,5-trizine) and HMX (1,3,5,7-tetranitro-1,3,5,7- tetraazacyclooctane). The impact sensitivity was evaluated with the characteristic height (h50). It is found that most of the studied compounds have lower sensitivities than CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12- hexaazaisowurtzitane). The crystal structures were predicted with the molecular mechanics method and optimized by the CA-PZ local density approximation of DFT. Analysis of the crystal energy gap indicates I-13, II-1, III-1, and IV-1 are nearly conductors and other compounds are semiconductors. For I-1∼I-8 and I-11, the largest contribution to the valence bands is mainly from the p states of the C and N atoms in the pyridine and fused ring and for the other compounds, from the p states of the C and N atoms in the amino group and pyridine.

Additional information

Funding

Thanks to the National Natural Science Foundation of China (NSAF Grant No. 11076017) for supporting this study.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.