148
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Molecular Insights of Marine Algal Polycyclic Aromatic Compounds as Promising Anti-Viral Agents for Targeting SARS-CoV-2 Proteins – an in Silico Validation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2008-2031 | Received 07 Nov 2022, Accepted 30 Apr 2023, Published online: 17 May 2023
 

Abstract

In this study, in silico SARS-CoV-2 inhibitory potential of 19 marine algal polycyclic aromatic compounds plus three commercial anti-viral drug were validated comparatively against three target proteins. Among 19 marine algal compounds apigenin-7-O-neohesperidoside,dieckol, luteolin-7-rutinoside, oxoglyantrypine, hydroxypentafuhalol A, and pseudopentafuhalol B exhibited good binding affinity of toward all three screened targets (Mpro, RdRp, and spike protein) of SARS-CoV-2 shortlisted for further In silico virtual screening analysis. Complete docking interaction analysis indicates that apigenin-7-O-neohesperidoside, dieckol, luteolin-7-rutinoside compounds display very excellent binding and inhibitory potential against the all three screened targets of SAR-CoV-2 among 19 screened marine algal compounds than standard anti-viral drugs. DFT analysis affirms the essential Homo-Lumo orbital energies of apigenin-7-O-neohesperidoside to inhibit targets of SARS-CoV-2. Further in silico analysis confirmed three chosen marine algal compounds are showing their excellent pharmacokinetic and molecular electrostatic potentials (MEPs) toward targets of SARS-CoV-2. MD simulation analysis of three chosen marine algal compounds possesses best simulation trajectories toward the binding pocket of target proteins essential to inhibit SARS-CoV-2 multiplication comparatively standard anti-viral drugs possess lesser binding affinity. However, further human clinical trials are necessary to justify their clinical pertinence.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.