41
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Spectral Elucidations and Molecular Docking Analysis of Hydrogen Bonded Coordination Metal Complex Cadmium Nicotinate Using DFT Method

, , , &
Pages 4009-4028 | Received 13 Mar 2023, Accepted 28 Jul 2023, Published online: 16 Aug 2023
 

Abstract

The geometry optimization, natural bond orbital analysis, and vibrational analysis of Cadmium Nicotinate (CdN) were performed using the density functional B3LYP level with a LANL2DZ basis set. Transfer of electrons from the lone pair oxygen in COO to the antibonding orbital of the O-H bond results in the formation of hydrogen bonds, which results in the most interesting biological properties, according to natural bond orbital analysis. The red shift in wavenumber has been confirmed by intramolecular O-H…O hydrogen bonding interactions and the water group coordinated to the central metal cadmium via oxygen atoms. UV spectral analysis, on the other hand, reveals the n→π* transition due to its strong peak in absorption spectra, demonstrating its biological activity. The MEP and Fukui Functions are used to represent the molecule’s reactive region, which remains more electrophilic around the oxygen atoms. DOS spectral analysis is used to investigate the molecular orbital contributions. The Electron Localization Function (ELF) and the Local orbital locator (LOL) were used to conduct topological studies on CdN. To investigate distinct covalent and non-covalent interactions, Hirshfeld surface analysis and reduced density gradient analysis were used. Molecular docking studies were used to investigate ligand-protein interactions and ADME parameter analysis and the Lipinski rule for the CdN molecule confirmed that the compound has good drug-like properties and could be developed as an antifungal drug in the future.

Acknowledgment

The Authors thank Dr. I. Hubert Joe, Associate Professor of Department of Physics, Kerala University for granting us permission to do computational works in their Research Lab.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.