Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 38, 2000 - Issue 7
105
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

AN EFFICIENT APPROACH TO SIMULATE NATURAL CONVECTION IN ARBITRARILY ECCENTRIC ANNULI BY VORTICITY-STREAM FUNCTION FORMULATION

Pages 739-756 | Published online: 29 Oct 2010
 

Abstract

The global method of polynomial-based differential quadrature (PDQ) and Fourier expansion-based differential quadrature (FDQ) is applied in this work to simulate the natural convection in an annulus between two arbitrarily eccentric cylinders. The vorticity-stream function formulation in the curvilinear coordinate system is taken as the governing equation, and the pressure single value condition is converted to an explicit formulation to update the stream function value on the inner cylinder wall. The present approach is very efficient, which combines the high efficiency and accuracy of the differential quadrature (DQ) method with simple implementation of pressure single value condition. When the present approach is applied to the concentric case, it was found that the computed stream function on the inner cylinder is almost zero and the flow field is symmetric. The computed average equivalent conductivity for the concentric case also agrees very well with available data in the literature. For the eccentric case, it was found that the computed stream function on the inner cylinder is not zero and there is a global circulation. The present result confirms the findings by Guj and Stella (Numer. Heat Transfer, vol. 27, pp. 89-105, 1995).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.