Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 40, 2001 - Issue 5
112
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

NUMERICAL SIMULATION OF SHORT-PULSED LASER PROCESSING OF MATERIALS

Pages 497-509 | Published online: 30 Nov 2010
 

Abstract

A numerical study of the short-pulsed laser-induced evaporation process is presented. For short-pulsed laser operation, the radiation penetration depths of most nonmetallic engineering materials are of the same order of magnitude as or of higher order of magnitude than the heat diffusion depth. Thus, the materials must be treated as semitransparent media during short-pulsed laser material processing. A quasi–one-dimensional model is developed to predict the two-dimensional heat conduction inside the solid. It is assumed that the conduction losses are normal to the surface and the ablation velocity is governed by an Arhennius equation. The model is solved using an integral method. The numerical simulations of the laser processing of ceramics are carried out. The results indicate that the radiation penetration depths of the materials make significant differences in the groove shape, heat losses, and the temperature field during short-pulsed laser operations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.